

2019 Noise Exposure Contours

Billy Bishop Toronto City Airport

Transport Canada

Environment

16 | 03 | 2022

Report > FINAL Internal ref. 685281-EG-L01-00

SNC-Lavalin GEM Québec Inc. 4700, rue de la Savane, Suite 101 Montreal, Quebec, Canada H4P 1T7 § 514.393.1000

March 16, 2022

Mr. Hugh Sh TRANSPOR 4900 Yonge Toronto, Ont M2N 6A5	F CANADA Street, 4 th FL	By email: Hugh.Shaftoe@tc.gc.ca
Subject:	Final Report 2019 Noise Exposure Contours – B O/Ref.: 685281-EG-L01-00	illy Bishop Toronto City Airport

Dear Mr. Shaftoe,

We are pleased to submit our final report following the realization of the above-mentioned mandate.

Please do not hesitate to contact us should you have any question or need additional information.

Best regards,

acque

Jacques Savard, M.Sc. Team Leader, Acoustics and vibration

/dg

Encl.

c.c. David Stonehouse, Geoffrey Wilson

2019 Noise Exposure Contours Billy Bishop Toronto City Airport

Final Report

TRANSPORT CANADA

Jacques Savard, M.Sc. Team Leader, Acoustics and vibration Environment

Nicolas Garcia, P.Eng. PEO No. 100509769

Acoustics and vibration Environment

Transport Canada Reference No.: T8080-210193 O/Reference No.: O/Document :

685281 685281-EG-L01-00

March 16, 2022

Notice

This report has been prepared and the work referred to in this report has been undertaken by SNC-Lavalin GEM Québec Inc., for the exclusive use of Transport Canada (the Client), who has been a party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. SNC-Lavalin GEM Québec Inc. accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report.

The findings, conclusions and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practising under similar conditions in the area, and (ii) reflect SNC-Lavalin GEM Québec Inc.'s, best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made with respect to the professional services provided to Client or the findings, conclusions and recommendations contained in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered or project parameters change, modifications to this report may be necessary.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final version of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by the Client, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of the Client and SNC-Lavalin GEM Québec Inc.

Executive Summary

The noise exposure contours for the Billy Bishop Toronto City Airport (the Airport) have been computed in accordance with Transport Canada's methodology (the methodology) for Noise Exposure Forecast (NEF), along with the surface area within contours.

The Tripartite Agreement (Agreement) imposes a limit on the expansion of the NEF contours. Sections 14 and 27 of the Agreement require that the 28 NEF contour does not expand beyond the official 25 NEF contour for 1990, except between points "X" and "Y". If the 28 NEF contour does expand beyond the official 25 NEF contour for 1990, aircraft movements have to be controlled in a way to bring back the 28 NEF contour within the official 25 NEF contour for 1990.

The analysis shows that the 28 NEF Contour for 2019, including helicopters in the calculation, expands beyond the official 25 NEF Contour for 1990 in the northwest quadrant.

When helicopters are excluded from the calculation, the NEF contours are slightly shrunken, and do not expand beyond the official 25 NEF Contour for 1990 but is very close.

According to the Agreement, aircraft movements have to be controlled in such a way to bring back the 28 NEF contour within the official 25 NEF contour for 1990. However, since circumstances related to the COVID-19 pandemic have led to a significant reduction in the number of flights since 2020, it is expected that the 28 NEF contour will shrink significantly and will not extend beyond the official 25 NEF contour for 1990. Further measures to control aircraft movements should therefore not be necessary for the moment. Nevertheless, when air traffic returns to normal, aircraft movements control measures might need to be put in place to maintain the 28 NEF contour within the official 25 NEF contour for 1990 under more normal circumstances.

	Surface area (km ²)					
NEF	With helicopters	Without helicopters				
35 +	0.4	0.4				
30 - 35	0.9	0.8				
28 - 30	0.7	0.7				
25 - 28	1.8	1.6				
Total	3.8	3.5				

Table iSurface area inside 2019 noise contours

Table of Contents

1		Introduction	1
2		Methodology	1
2.1		Metrics and parameters	1
2.2		Method of calculation	1
3		Noise contours	2
3.1		Calculation assumptions	2
	3.1.1	Calculation of peak planning day	2
	3.1.2	Fleet composition and runway use	4
	3.1.3	Flight paths	8
3.2		Results	9
4		Conclusion	13
5		Bibliography	14

List of Tables

Table 1	Peak planning day with helicopters	3
Table 2	Peak planning day without helicopters	4
Table 3	Runway use by aircraft category	7
Table 4	Aircraft categories	8
Table 5	Surface area (km ²)	12

List of Figures

Figure 1	Runway identification	5
Figure 2	Summary of fleet composition	6
Figure 3	Summary of runway use	7
Figure 4	NEF contours with helicopters	10
Figure 5	NEF contours without helicopters	11

List of Appendixes

Appendix A

Fleet composition

Appendix B

Summary of movements

1 Introduction

This document presents the noise contours for the year 2019 for the Billy Bishop Toronto City Airport (Airport).

Environmental noise or community noise, including airport activities, is not regulated by Canada's government, nevertheless Transport Canada's methodology (the methodology) is the standard for assessing the perceived noise in the vicinity of airports. This methodology is established across Canada and is used for this study. The interpretation of the results produced will be used to establish the magnitude (intensity of noise) and extent (surface area) of areas affected by airport noise.

2 Methodology

2.1 Metrics and parameters

The representation of noise generated by airport operations has been normalized by Transport Canada using Noise Exposure Forecast (NEF) contours. The NEF methodology is not by itself a forecast, but a noise calculation based either on a forecast of future movements or by actual movements. The noise contours for 2019, presented in this report, have been produced using the NEF methodology on the basis of actual movement data from Transport Canada. The original data is provided to Transport Canada by Nav Canada, the country's civil air navigation services provider, for all airports where Nav Canada operates a control tower.

The index provided by the noise contours is used to show areas affected by airport noise. This single number rating is easy to interpret, but nevertheless, requires a complex evaluation process. It takes into account for each movement of the whole year, the type of aircraft, the runway used, the flight path, the flight distance, and the period of day. Note that the night period is defined from 10 p.m. to 7 a.m.

Flight distances and departure flight path directions have been determined according to geographic coordinates of destination airports drawn from Transport Canada database and specialized publications.

The "Air Traffic Designators" entitled TP 143 published by Transport Canada, specialized databases published by aeronautical sector companies, as well as internal corporate databases, have been used to determine the aircraft characteristics.

2.2 Method of calculation

NEF-Calc 2.0.6.1 software was used to produce the noise contours. It has been developed by the National Research Council for Transport Canada. Nef-Calc 2.0.6.1 processes operation-related data from airports and calculates noise levels for the receptor grid. Noise exposure contours are then drawn for the whole study area.

The software does not include sound data for the aircraft DASH-8 Q400. Noise and performance data of DASH-8-300 were used as surrogate. This hypothesis may have a major impact on the noise contours, especially considering that DASH-8 Q400 is the most represented aircraft in terms of the annual number of movements with 42% of all 2019 movements.

The NEF methodology developed by Transport Canada uses the parameter "Peak Planning Day", which has been used to calculate the noise contours. The number of movements of the Peak Planning Day is estimated by averaging the seven busiest days of the three busiest months of the year. The detailed calculation of the Peak Planning Day is presented in Section 3.1.1. The calculated noise contours are representative of a near to worst case 24-hour period.

3 Noise contours

3.1 Calculation assumptions

The database of aircraft movements for 2019 from Transport Canada for the Airport was used to calculate the Peak Planning Day. The composition of the fleet and the average annual runway use have also been computed from the Transport Canada database.

3.1.1 Calculation of peak planning day

Tables 1 and 2 below present the results of the calculation of the Peak Planning Day for itinerant and local movements for 2019 for the Airport.

The number of movements of the Peak Planning Day is found to be 412 for itinerant movements and 229 for local movements. In comparison, the averages for 2019 are 266 for itinerant movements and 104 for local movements per day.

The number of circuits is half the number of local movements. A movement is either an arrival or a departure; overflights are excluded from the calculation. Overflights are flights transiting in the control zone of the control tower, going to another destination without landing at the airport. Since overflights have no real operation at the airport, they are excluded from the calculations. Local movements show much more daily variability than itinerant movements.

The calculation of the noise contours has been made for 412 itinerant movements and 229 local movements (115 circuits), with a total of 641 aircraft movements.

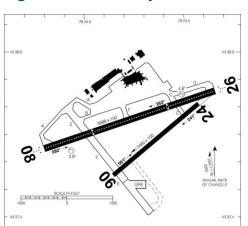
Helicopters accounted for 8,578 movements in 2019, of which 1,814 were runway operations, mostly Ornge flights using AgustaWestland AW139 helicopters, and 6,764 were helipad operations, mostly Heli Tours with Robinson R44 helicopters.

Excluding helicopter movements, the number of movements of the Peak Planning Day is found to be 362 for itinerant movements, and 229 for local movements. In comparison, the averages for 2019 are 243 for itinerant movements, and 104 for local movements per day.

Itine	erant	L	ocal
Date	Movements	Date	Movements
August 2	425	July 31	274
August 11	418	July 12	266
August 23	410	July 2	258
August 16	400	July 24	238
August 25	397	July 23	234
August 1	397	July 4	228
August 9	396	July 25	220
July 7	436	August 13	252
July 26	434	August 3	244
July 4	415	August 28	224
July 24	395	August 16	224
July 12	388	August 19	212
July 10	383	August 20	202
July 25	378	August 7	202
June 7	469	June 19	266
June 22	439	June 27	254
June 23	430	June 23	236
June 21	414	June 7	210
June 27	413	June 17	196
June 9	409	June 29	190
June 19	407	June 4	188

Table 1 Peak planning day with helicopters

Itin	erant	L	ocal
Date	Movements	Date	Movements
July 4	375	July 31	274
July 26	372	July 12	266
July 23	364	July 2	258
July 12	357	July 24	238
July 8	354	July 23	234
July 15	352	July 4	228
July 31	350	July 25	220
August 1	383	August 13	252
August 2	368	August 3	244
August 23	356	August 28	224
August 16	346	August 16	224
August 20	341	August 19	212
August 15	341	August 20	202
August 9	341	August 7	202
June 7	391	June 19	266
June 12	377	June 27	254
June 27	376	June 23	236
June 19	370	June 7	210
June 18	368	June 17	196
June 11	365	June 29	190
June 21	356	June 4	188


Table 2Peak planning day without helicopters

3.1.2 Fleet composition and runway use

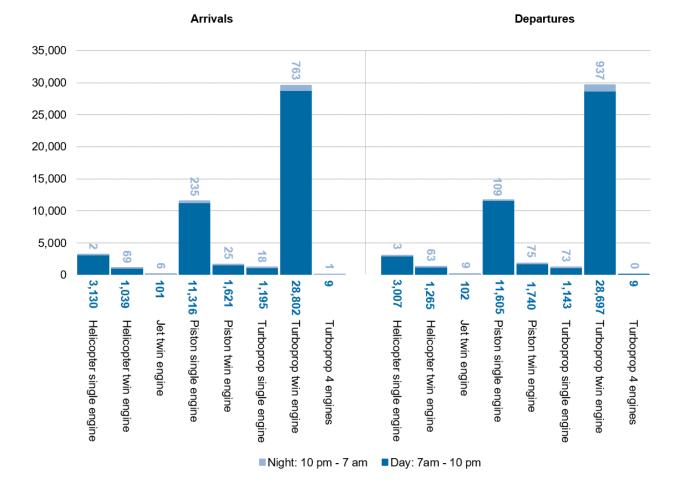

The data on the composition of the fleet of all operations at the Airport in 2019 including helicopters is presented in Appendix A. The document TP-143 – Air Traffic Designators from Transport Canada is the primary source of information for the identification of aircraft types. Other sources, such as Transport Canada's aircraft registration database and commercial databases, were also referenced.

Figure 1 illustrates the configuration of runways, taken from the Canada Air Pilot. Figure 2 and Figure 3 summarize the composition of fleet and runway use for the airport in 2019, compiled from the itinerant movements database from Transport Canada. Detailed data is presented in Appendix B.

The total number of movements in 2019 was 135,027, divided into 97,169 itinerant movements and 37,858 local movements.

Figure 1 Runway identification

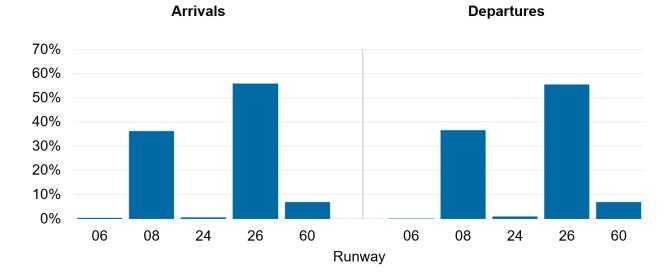


Figure 2 Summary of fleet composition

The movements during the night (10 p.m. to 7 a.m.) accounted for 2.2% of total movements in 2019. For the calculation of noise contours, using the methodology, each night-time movement is equivalent to 16.67 daytime movements. The 2,970 night-time movements recorded in 2019 are equivalent to 49,510 daytime movements. The night-time movements represent an important contribution to the noise contours.

Overall, twin-engine turboprops (mostly DASH-8) are the most frequent aircraft at the Airport with 44% of all movements. The DASH-8 Q400 alone accounts for 42% of all movements of 2019. The proportion of single engine piston aircraft is also 44%.

Figure 3 illustrates the summary of runway use and Table 2 shows the runway use by aircraft types.

Figure 3 Summary of runway use

Table 3Runway use by aircraft category

Runway	G	lobal	Helicopters		Jets		Pistons		Turboprops	
	Arrivals	Departures	Arrivals	Departures	Arrivals	Departures	Arrivals	Departures	Arrivals	Departures
00	180	6	0	1	0	0	180	5	0	0
06	0.4%	0.01%	0%	0.02%	0%	0%	1%	0.04%	0 %	0%
0.0	17,493	17,862	309	350	38	43	5,200	5,471	11,946	11,998
08	36%	37%	7%	8%	36%	39%	39%	40%	39%	39%
0.4	317	483	6	0	0	0	311	482	0	1
24	0.7%	1%	0.1%	0%	0%	0%	2%	4%	0 %	0.003%
20	26,988	27,076	571	577	69	68	7,506	7,571	18,842	18,860
26	56%	55%	13%	13%	64%	61%	57%	56%	61%	61%
00	3,354	3,410	3,354	3,410	0	0	0	0	0	0
60	7%	7%	79%	79%	0%	0%	0%	0%	0%	0%
Tatal	48,332	48,837	4,240	4,338	107	111	13,197	13,529	30,788	30,859
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 4 indicates the aircraft used in the represented categories defined in the calculation. Aircrafts with a small number of movements in 2019 are not shown in this table; they are listed in detail in Appendix A.

Table 4Aircraft categories

Aircraft categories	Aircraft types
Helicopter single engine	Robinson R44, etc.
Helicopter twin engine	Agusta Westland AW139, etc.
Piston single engine	Cessna series 150/172, Beech 36, Gippsaero GA8 Airvan, Piper PA-28, etc.
Piston twin engine	Piper PA-23/27/31, etc.
Turboprop single engine	Pilatus PC-12, Cessna 208 Caravan, etc.
Turboprop twin engine	Dash 8, etc.
Jet twin engine	Dassault Falcon 10/20, etc.

3.1.3 Flight paths

Flight paths for departures, arrivals and circuits have been modelled from information gathered from the Canada Air Pilot, the Canada Flight Supplement, Porter Airlines and NAV CANADA.

Departure flight paths:

- > Runway 08: right turn at waypoint LODRA (N43 38.31 W79 21.52), heading 090°;
- > Runway 26: left turn at 800' ASL, to waypoint EMDOS (N43 31.08 W79 19.28).

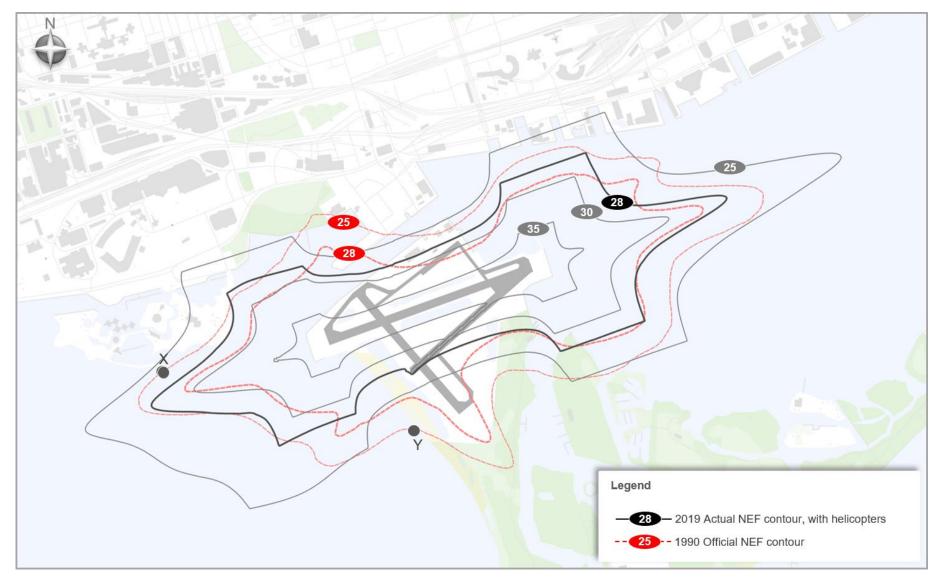
Approach slopes:

- > Runways 06, 08, and 24: 3.5°;
- > Runway 26: 3.5° (visual) or 4.8° (instrument).

Runways 24 and 26 have left hand circuits while runways 06 and 08 have right hand circuits.

3.2 Results

Figure 4 illustrates the Airport's noise contours for 2019 actual movements including helicopters, along with the 1990 NEF contours. The 1990 NEF contours were prepared in April 1978 by the Canadian Air Transport Administration of the Ministry of Transport for the Canada Mortgage and Housing Corporation. The noise contours excluding helicopters are shown in Figure 5.


The Agreement imposes a limit on the expansion of NEF contours. Section 27 of the Agreement requires that the 28 NEF contour does not expand beyond the official 25 NEF contour for 1990, except between points "X" and "Y". If the 28 NEF contour does expand beyond the official 25 NEF contour for 1990, aircraft movements have to be controlled in such a way to bring back the 28 NEF contour within the official 25 NEF contour for 1990.

The analysis shows that the 28 NEF Contour for 2019, including helicopters in the calculation, expands beyond the official 25 NEF Contour for 1990 in the northwest quadrant.

When helicopters are excluded from the calculation, the NEF contours are slightly shrunken, and do not expand beyond the official 25 NEF Contour for 1990 but is very close. There is no margin left for the 28 NEF Contour to expand from the current one.

According to the Agreement, aircraft movements have to be controlled in such a way to bring back the 28 NEF contour within the official 25 NEF contour for 1990. However, since circumstances related to the COVID-19 pandemic have led to a significant reduction in the number of flights since 2020, it is expected that the 28 NEF contour will shrink significantly and will not extend beyond the official 25 NEF contour for 1990. Further measures to control aircraft movements should therefore not be necessary for the moment. Nevertheless, when air traffic returns to normal, aircraft movements control measures might need to be put in place to maintain the 28 NEF contour within the official 25 NEF contour for 1990 under more normal circumstances.

Figure 4 NEF contours with helicopters

Figure 5NEF contours without helicopters

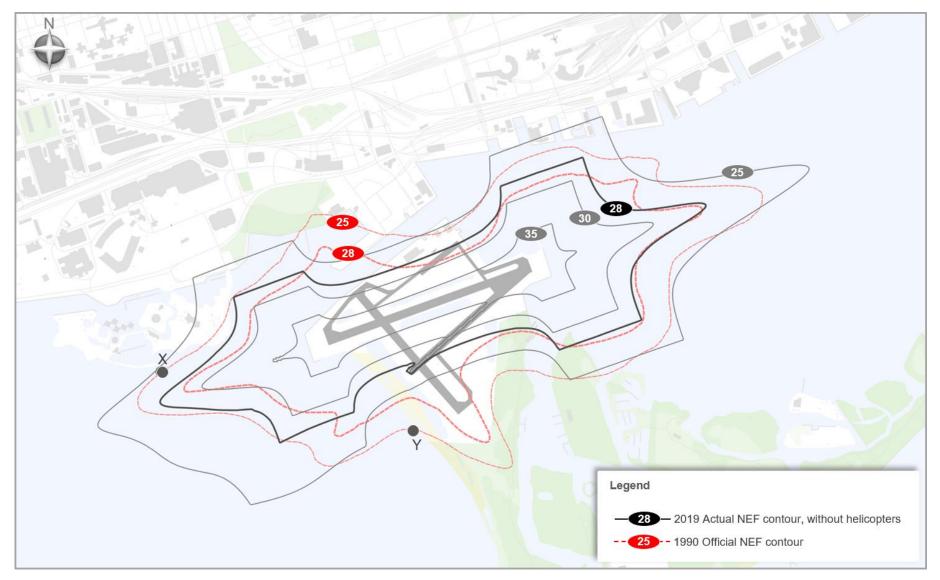


Table 5 shows the surface area within the contours in 2019. It is the total surface area in each range of NEF values.

Table 5Surface area (km²)

	Surface area (km ²)					
NEF	With helicopters	Without helicopters				
35 +	0.4	0.4				
30 - 35	0.9	0.8				
28 - 30	0.7	0.7				
25 - 28	1.8	1.6				
Total	3.8	3.5				

4 Conclusion

The 2019 noise exposure contours for the Airport have been computed in accordance with Transport Canada methodology. The surface area within contours was also compiled. These contours cover a total area of 3.8 square kilometers (km²) including helicopters, and 3.5 km² excluding helicopters. The NEF 28 contour covers an area of 2.0 km² including helicopters, and 1.9 km² excluding helicopters.

The 28 NEF contour for 2019, including helicopters, expands beyond the official 25 NEF contour for 1990, the limit set by the Agreement for the expansion of the NEF contour.

When helicopters are excluded from the calculation, the NEF contours are slightly shrunken, and do not expand beyond the official 25 NEF Contour for 1990 but is very close.

According to the Agreement, aircraft movements have to be controlled in such a way to bring back the 28 NEF contour within the official 25 NEF contour for 1990. However, since circumstances related to the COVID-19 pandemic have led to a significant reduction in the number of flights since 2020, it is expected that the 28 NEF contour will shrink significantly and will not extend beyond the official 25 NEF contour for 1990. Further measures to control aircraft movements should therefore not be necessary for the moment. Nevertheless, when air traffic returns to normal, aircraft movements control measures might need to be put in place to maintain the 28 NEF contour within the official 25 NEF contour for 1990 under more normal circumstances.

5 Bibliography

- INTERNATIONAL CIVIL AVIATION ORGANIZATION, Standards and Recommended Practices, Protection of the Environment, Annex 16 to the convention relative to international civil aviation, Volume 1, "Aircraft Noise", second edition, 1988.
- TRANSPORT CANADA, Aviation Group, "NEF micro computer system user manual", June 1990, TP 6907.
- TRANSPORT CANADA, "Land Use Planning in the Vicinity of Airports", 9th edition, 2013/14, TP 1247.

TRANSPORT CANADA, "Air Traffic Designators", TP 143, 2009.

FAA, U.S. Department of transportation, Advisory Circular, "Noise Levels for U.S. Certificated and Foreign Aircraft", 2001.

Appendix A

Fleet composition

Aircraft	D1*	D2*	D3*	D4*	мтоw	Manufacturer	Model	Equivalent	Number
A109	L	2	Т	R	3,000	AGUSTA	A-109, Power	B222	14
A139	Μ	2	Т	R	6,400	AGUSTAWESTLA ND	AW-139	BH12/CH135 MAN	2,239
A332	Н	2	J	R	230,000	AIRBUS A-330-200		A33034	2
AA5	L	1	Ρ	F	1,000	AMERICAN	AA-5 Traveler	GASEPF	6
AC11	L	1	Ρ	R	2,000	ROCKWELL	112, 114 Commander, Alpine Commander	RWCM14	24
AEST	L	2	Ρ	R	3,000	PIPER	PA-60, Aerostar	PA60	10
AS50	L	1	Т	F	3,000	AEROSPATIALE	AS-350/550 Ecureuil, Astar, SuperStar, Fennec	AS350	13
AS55	L	2	Т	F	3,000	AEROSPATIALE	AS-355/555 Ecureuil 2, TwinStar, Fennec	B222	39
B06	L	1	Т	F	2,000	BELL	206A/B/L, 406, LongRanger (CH-139 JetRanger)	BH06MAN	59
B190	Μ	2	Т	R	8,000	BEECH	1900 Airliner (C-12J)	BEC190	6
B350	Μ	2	Т	R	6,000	BEECH	B300 Super King Air 350	DHC6	380
B407	L	1	Т	F	3,000	BELL	407	BH06MAN	2
B427	L	2	Т	F	3,000	BELL	427	B222	2
B429	L	2	Т	F	3,175	BELL	GlobalRanger	B222	10
B430	L	2	Т	R	5,000	BELL	430	B222	18
BE10	L	2	Т	R	6,000	BEECH	100 King Air (U-21F)	BEC100	51
BE18	L	2	Ρ	R	4,000	BEECH	18 (C-45 Expeditor)	BEC18	9
BE20	L	2	Т	R	6,000	BEECH	200, 1300 Super King Air, Commuter (C-12A)	BEC200	158
BE24	L	1	Ρ	R	2,000	BEECH	24 Musketeer Super, Sierra	GASEPF	14
BE30	Μ	2	Т	R	7,000	BEECH	300 Super King Air	BEC300	60
BE33	L	1	Ρ	R	2,000	BEECH	33 Bonanza (E-24)	BEC33	20
BE35	L	1	Ρ	R	2,000	BEECH	35 Bonanza	GASEPV	52
BE36	L	1	Ρ	R	2,000	BEECH	36 Bonanza	GASEPV	73
BE55	L	2	Ρ	R	3,000	BEECH	55 Baron (T-42)	BEC55	2
BE58	L	2	Р	R	3,000	BEECH	58 Baron	BEC58	37
BE60	L	2	Ρ	R	4,000	BEECH 60 Duke		BEC60	4
BE9L	L	2	Т	R	5,000	BEECH 90, A90-E90 King Air (T-44, VC-6)		BEC90	150
BE9T	L	2	Т	R	5,000	BEECH	F-90 King Air	BEC9F	11
BL17	L	1	Ρ	R	2,000	BELLANCA	17 Viking, Super Viking, Turbo Viking	BL26	6

Aircraft	D1*	D2*	D3*	D4*	мтоw	Manufacturer	Model	Equivalent	Number
BL8	L	1	Р	F	2,000	BELLANCA	8 Decathlon, Scout	GASEPF	4
C10T	L	1	Т	R	1,814	CESSNA	P210	CNA210	1
C140	L	1	Ρ	F	1,000	CESSNA	140	CNA150	1
C150	L	1	Ρ	F	1,000	CESSNA	150, A150, Commuter, Aerobat	CNA150	18,051
C152	L	1	Ρ	F	1,000	CESSNA	152, A152, Aerobat	CNA152	1,887
C172	L	1	Ρ	F	2,000	CESSNA	172, P172, R172, Skyhawk, Cutlass (T-41)	CNA172	27,666
C175	L	1	Ρ	F	2,000	CESSNA	175, Skylark	GASEPV	2
C177	L	1	Ρ	F	2,000	CESSNA	177, Cardinal	CNA177	9
C180	L	1	Ρ	F	2,000	CESSNA	180, Skywagon 180 (U-17C)	CNA180	58
C182	L	1	Ρ	F	2,000	CESSNA	182, Skylane	CNA182	703
C185	L	1	Ρ	F	2,000	CESSNA	185, A185 Skywagon, Skywagon 185 (U-17A/B)	CNA185	102
C195	L	1	Ρ	F	2,000	CESSNA	195 (LC-126)	GASEPV	18
C206	L	1	Ρ	F	2,000	CESSNA	206, P206, T206, TP206, (Turbo) Super Skywagon	CNA206	3,030
C207	L	1	Ρ	F	2,000	CESSNA	207 (Turbo) Stationair	CNA207	23
C208	L	1	Т	F	4,000	CESSNA	208 Caravan 1, (Super)Cargomaster (C-98, U- 27)	CNA208	734
C210	L	1	Ρ	R	2,000	CESSNA	210, T210, (Turbo)Centurion	CNA210	36
C240	L	1	Ρ	F	1,600	CESSNA	TTx Model T240	GASEPV	14
C310	L	2	Ρ	R	3,000	CESSNA	310, T310 (U-3, L-27)	CNA310	80
C337	L	2	Ρ	R	2,000	CESSNA	337, M337 (Turbo)Super Skymaster (O-2)	CNA337	34
C340	L	2	Ρ	R	3,000	CESSNA	340	CNA340	44
C414	L	2	Ρ	R	3,000	CESSNA	414, Chancellor	CNA414	80
C421	L	2	Ρ	R	4,000	CESSNA	421, Golden Eagle, Executive Commuter	CNA421	21
C441	L	2	Т	R	5,000	CESSNA	441 Conquest, Conquest 2	CNA441	52
C550	Μ	2	J	R	7,000	CESSNA	550, S550, 552 Citation 2/S2/Bravo (T-47, U-20)	CNA550	2
C72R	L	1	Ρ	R	2,000	CESSNA	172RG Cutlass RG	GASEPV	3
C77R	L	1	Ρ	R	2,000	CESSNA 177RG Cardinal RG		CNA17B	14
C82R	L	1	Ρ	R	2,000	CESSNA	R182, TR182 (Turbo) Skylane RG	CNA182	10
CAT	Μ	2	Ρ	А	14,000	CONSOLIDATED	PBY, OA-10, A-10 Catalina, Canso (28)	DHC6	4

Aircraft	D1*	D2*	D3*	D4*	мтоw	Manufacturer	Model	Equivalent	Number
CH7A	L	1	Ρ	F	2,000	CHAMPION	7EC/ECA/FC/JC Citabria, Traveler, Tri-Con, Tri-Traveler	GASEPF	1
CL60	Μ	2	J	R	15,000	CANADAIR	CL-600/601/604 Challenger (CC-144)	CL600	13
CNUK	L	1	Ρ	F	1,000	FLEET	80 Canuck	GASEPF	1
COL3	L	1	Ρ	F	1,500	Lancair	LC40-550FG	BEC58P	6
COL4	L	1	Ρ	F	1,633	CESSNA	400 Corvalis TT	BEC58P	62
CRJ2	Μ	2	J	R	24,000	CANADAIR	RJ-200 Regional Jet	CLREGJ	1
DA40	L	1	Ρ	F	1,800	DIAMOND	DA 40	GASEPF	95
DA42	L	2	Ρ	R	1,700	DIAMOND	DA42	GASEPV	114
DA62	L	2	Ρ	R	2,300	DIAMOND	DA62	BEC58P	25
DC3	Μ	2	Ρ	R	13,000	DOUGLAS	DC-3 (C-41, C-47 Skytrain, Skytrooper, Dakota)	DC3	4
DH2T	L	1	Т	F	3,000	DE HAVILLAND	DHC-2 Mk3 Turbo Beaver	CNA441	4
DH6	L	2	Т	F	6,000	DE HAVILLAND	Twin Otter	DHC6	3
DH8A	Μ	2	Т	R	16,000	DE HAVILLAND	DHC-8-100 Dash 8 (E-9, CT- 142, CC-142)	DHC8	14
DH8B	Μ	2	Т	R	16,000	DE HAVILLAND	DHC-8-200 Dash 8	DHC8	2
DH8C	Μ	2	Т	R	20,000	DE HAVILLAND	DHC-8-300 Dash 8	DHC830	2
DH8D	Μ	2	Т	R	26,000	DE HAVILLAND	DHC-8-400 Dash 8	DHC830	57,320
DHC2	L	1	Ρ	F	3,000	DE HAVILLAND	DHC-2 Mk1 Beaver (U-6, L-20)	DHC2	28
DHC6	L	2	Т	F	6,000	DE HAVILLAND	DHC-6 Twin Otter (CC-138)	DHC6	4
DHC7	Μ	4	Т	R	20,000	DE HAVILLAND	DHC-7 Dash 7 (O-5, EO-5)	DHC7	19
DV20	L	1	Ρ	F	1,000	DIAMOND	DA-20/22, DV-20 Katana, Speed Katana	GASEPF	111
E50P	L	2	J	R	5,000	Embraer	Phenom 100	CNA501	2
EAGL	L	1	Ρ	F	700	CHRISTEN EAGLE	EAGLE II	GASEPV	1
EC20	L	1	Т	F	2,000	EUROCOPTER	EC-120 Colibri	BH06MAN	11
EC30	L	1	Т	F	2,400	EUROCOPTER	EC130B4	AS350	20
EC35	L	2	Т	F	3,000	EUROCOPTER	EC-135	BH12/CH135 MAN	16
EVOL	L	1	Т	R	2,000	LANCAIR	Lancair Evolution	GASEPV	4
EVSS	L	1	Ρ	F	600	AEROTECHNIC	Sportstar	GASEPF	4
EXPR	L	1	Ρ	F	1,400	AURIGA	Phoenix	GASEPF	6
FA10	Μ	2	J	R	9,000	DASSAULT	Falcon 10, Mystere 10	FAL10	148

Aircraft	D1*	D2*	D3*	D4*	мтоw	Manufacturer	Model	Equivalent	Number
FA20	Μ	2	J	R	15,000	DASSAULT	Falcon 20, Mystere 20 (T-11, TM-11)	FAL20	50
FA62	L	1	Ρ	F	2,000	FAIRCHILD	M-62 (PT-19/23/26, T-19 Cornell)	GASEPF	1
G115	L	1	Ρ	R	2,000	GROB	G-115A/B/C/D/E, Bavarian (Heron, Tutor)	GASEPF	136
G200	L	1	Ρ	F	700	GILES	G-200	GASEPV	1
GA7	L	2	Ρ	R	2,000	GRUMMAN AMERICAN	GA-7 Cougar	GA7	1
GA8	L	1	Ρ	F	1,800	GIPPSAERO	GA8 Airvan	CNA206	1,253
GLAS	L	1	Ρ	F	1,088	STODDARD- HAMILTON	Glasair	GASEPF	2
HUSK	L	1	Ρ	F	1,000	CHRISTEN	A-1 Husky	GASEPV	7
J3	L	1	Ρ	F	1,000	PIPER	J-3 Cub (L-4, NE)	GASEPF	1
JS31	Μ	2	Т	R	7,000	BRITISH AEROSPACE	BAe-3100 Jetstream 31 (T.Mk.3)	BAEJ31	1
KODI	Μ	1	Т	F	3,290	QUEST KODIAK	Kodiak aircraft	CNA20T	4
LA25	L	1	Ρ	А	2,000	LAKE	LA-250/270 (Turbo)Renegade, Seawolf, Seafury	GASEPF	14
LA4	L	1	Ρ	А	2,000	LAKE	LA-4/200, Buccaneer	LA42	37
LNC2	L	1	Ρ	R	1,000	LANCAIR	Lancair 200/235/320/360	GASEPV	2
LNC4	L	1	Ρ	R	2,000	LANCAIR	Lancair 4	GASEPV	19
LNCE	L	1	Ρ	F	1,451	LANCAIR	Lancair ES	GASEPV	2
M20P	L	1	Ρ	R	2,000	MOONEY	M-20, M-20A-J/L/R (non- turbocharged)	M20J	155
M20T	L	1	Ρ	R	2,000	MOONEY	M-20K/M, Bravo, Encore (turbocharged)	M20K	10
MU2	L	2	Т	R	5,000	MITSUBISHI	MU-2, Marquise, Solitaire (LR- 1)	MU2	436
P180	L	2	Т	R	6,000	PIAGGIO	P-180 Avanti	SD330	22
P210	L	1	Ρ	R	2,000	CESSNA	P210 Pressurized Centurion	CNA206	18
P28A	L	1	Ρ	F	2,000	PIPER	PA-28-140/150/160/180 Archer, Cadet, Cherokee	PA28CA	1,819
P28B	L	1	Ρ	F	2,000	PIPER	PA-28-201T/235/236 Cherokee, Dakota	PA28CA	103
P28R	L	1	Ρ	R	2,000	PIPER	PA-28R-180/200/201 Cherokee Arrow, Turbo Arrow	PA28CA	79
P28T	L	1	Р	R	2,000	PIPER	PA-28RT Arrow 4, Turbo Arrow 4	PA28CA	19
P32R	L	1	Ρ	R	2,000	PIPER	PA-32R Cherokee Lance, Saratoga SP, Turbo	GASEPV	36

Aircraft	D1*	D2*	D3*	D4*	мтоw	Manufacturer	Model	Equivalent	Number
P32T	L	1	Ρ	R	2,000	PIPER	PA-32RT Lance 2, Turbo Lance 2	GASEPV	2
P337	L	2	Ρ	R	3,000	CESSNA	T337G, P337 Pressurized Skymaster	CNA337	32
P46T	L	1	Т	R	2,000	PIPER	PA-46T Malibu Meridian	PA46	89
PA18	L	1	Ρ	F	1,000	PIPER	PA-18 Super Cub (L-18C, L-21, U-7)	PA18	4
PA22	L	1	Ρ	F	1,000	PIPER	PA-22 Tri-Pacer, Caribbean, Colt	PA22CO	2
PA23	L	1	Ρ	R	2,000	PIPER	PA-23-150/160 Apache	PA23AZ	1,064
PA24	L	1	Ρ	R	2,000	PIPER	PA-24 Comanche	PA24	20
PA27	L	2	Ρ	R	3,000	PIPER	PA-23-235/250 Aztec, Turbo Aztec (U-11)	PA23AZ	322
PA28	L	1	Ρ	R	2,000	PIPER	Cherokee/ Archer/ Cadet	GASEPV	3,311
PA30	L	2	Ρ	R	2,000	PIPER	PA-30/39 Twin Comanche, Turbo Twin Comanche	PA30	89
PA31	L	2	Ρ	R	4,000	PIPER	PA-31/31P Navajo, Chieftain, Mojave, T-1020	PA31	2,627
PA32	L	1	Ρ	F	2,000	PIPER	PA-32 Cherokee Six, Saratoga, Turbo Saratoga	GASEPV	29
PA34	L	2	Ρ	R	3,000	PIPER	PA-34 Seneca	PA34	30
PA38	L	1	Ρ	F	1,000	PIPER	PA-38 Tomahawk	PA38	4
PA44	L	2	Ρ	R	2,000	PIPER	PA-44 Seminole, Turbo Seminole	PA44	6
PA46	L	1	Ρ	R	2,000	PIPER	PA-46 Malibu, Malibu Mirage	PA46	89
PAY2	L	2	Т	R	5,000	PIPER	PA-31T-620/T2-620 Cheyenne, Cheyenne 2	CNA441	12
PC12	L	1	Т	R	5,000	PILATUS	PC-12, Eagle	CNA20T	1,622
PIVI	L	1	Ρ	F	1,000	PIPISTEL	Virus SW	GASEPF	2
PTS1	L	1	Ρ	F	1,000	PITTS	S-1 Special	GASEPF	2
PTS2	L	1	Ρ	F	1,000	PITTS	S-2 Special	GASEPF	18
R22	L	1	Ρ	F	1,000	ROBINSON	R-22	BH06MAN	6
R44	L	1	Ρ	F	2,000	ROBINSON	R-44 Astro	HU30	5,994
R66	L	1	Т	F	1,225	Robinson	R66	BH06MAN	37
RV10	L	1	Ρ	F	1,200	VAN'S	RV-10	GASEPV	7
RV4	L	1	Ρ	F	1,000	VAN'S	RV-4	GASEPF	4
RV6	L	1	Р	F	1,000	VAN'S	RV-6	GASEPF	8
RV7	L	1	Ρ	F	815	VAN'S	RV-7	GASEPV	7
RV9	L	1	Р	F	793	VAN'S	RV9/9A	GASEPF	2

Aircraft	D1*	D2*	D3*	D4*	мтоw	Manufacturer	Model	Equivalent	Number
S108	L	1	Р	F	2,000	STINSON	108 Voyager, Station Wagon	GASEPF	8
S76	L	2	Т	R	5,000	SIKORSKY	S-76, H-76, AUH-76, Spirit, Eagle (HE-24)	S76	72
S92	Μ	2	Т	R	12,000	SIKORSKY	S-92 Helibus	AS332	26
SA30	L	1	Ρ	F	700	JUST AIRCRAFT	JA35 Super STOL XL	GASEPF	2
SR20	L	1	Ρ	F	2,000	CIRRUS	SR-20	GASEPF	35
SR22	L	1	Р	F	1,500	CIRRUS	SR22	GASEPF	488
SW3	Μ	2	Т	R	6,000	FAIRCHILD SWEARINGEN	SA-226TB, SA-227TT Merlin 3	SAMER3	4
SW4	Μ	2	Т	R	7,000	FAIRCHILD SWEARINGEN	Merlin 4/4C/23, Metro2/2A/3/3A, Expediter	SAMER4	397
T18	L	1	Ρ	F	800	THROP	Throp T-18	GASEPV	2
TAYB	L	1	Ρ	F	600	TAYLORCRAFT	BC12-D	GASEPF	1
TBM7	L	1	Т	R	3,000	SOCATA	TBM-700	CNA441	30
TBM8	L	1	Т	R	7,400	Socata	TBM850	CNA441	20
TBM9	L	1	Т	R	3,300	SOCATA	TBM 900	CNA441	14
TOBA	L	1	Р	F	2,000	AEROSPATIALE	Tobago	GASEPF	6
TRIN	L	1	Ρ	R	2,000	SOCATA	TB-20/21 Trinidad	GASEPF	16
Z42	L	1	Ρ	F	2,000	ZLIN	Z-42/142/242	GASEPV	28
ZZZZ							aircraft not assigned a designator	GASEPV	12

*D1: Weight: L – light *D2: Number of engine

*D3: Engine type: P – pistons T – turboprops

J – jets

*D4: Landing gear: F – fixed

R – removable

A – amphibious

M – medium

H – heavy

Summary of movements

Fleet summary of itinerant movements

Airoroft		Arrivals			Total		
Aircraft	Day	Night	Total	Day	Night	Total	Total
Helicopter single engine	3,130	2	3,132	3,007	3	3,010	6,142
Helicopter twin engine	1,039	69	1,108	1,265	63	1,328	2,436
Jet twin engine	101	6	107	102	9	111	218
Piston single engine	11,316	235	11,551	11,605	109	11,714	23,265
Piston twin engine	1,621	25	1,646	1,740	75	1,815	3,461
Turboprop single engine	1,195	18	1,213	1,143	73	1,216	2,429
Turboprop twin engine	28,802	763	29,565	28,697	937	29,634	59,199
Turboprop 4 engines	9	1	10	9	0	9	19
Total	47,213	1,119	48,332	47,568	1,269	48,837	97,169

Day: 7 a.m. - 10 p.m.

•

• Night: 10 p.m. - 7 a.m.

Runway use - Arrivals

Aircraft	06		08		24		26		60	
AllCrait	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
Helicopter single engine			2		1				3,127	2
Helicopter twin engine			281	26	5		532	39	221	4
Jet twin engine			36	2			65	4		
Piston single engine	177	3	4,472	95	310	1	6,358	136		
Piston twin engine			626	7			995	18		
Turboprop single engine			446	6			749	12		
Turboprop twin engine			11,253	239			17,549	524		
Turboprop 4 engines			2				7	1		
Total	177	3	17,118	375	316	1	26,254	734	3,348	6

Runway use - Departures

Aircraft	06		08		24		26		60	
Aircran	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
Helicopter single engine			2	1			11		2,994	2
Helicopter twin engine	1		327	20			530	36	407	7
Jet twin engine			40	3			62	6		
Piston single engine	5		4,747	41	473	1	6,380	67		
Piston twin engine			661	22	8		1,071	53		
Turboprop single engine			436	28			707	45		
Turboprop twin engine			11,179	355		1	17,518	581		
Turboprop 4 engines							9			
Total	6	0	17,392	470	481	2	26,288	788	3,401	9

514-393-1000 www.snclavalin.com

